Deprecated: Creation of dynamic property db::$querynum is deprecated in /www/wwwroot/junyuewh.com/inc/func.php on line 1413

Deprecated: Creation of dynamic property db::$database is deprecated in /www/wwwroot/junyuewh.com/inc/func.php on line 1414

Deprecated: Creation of dynamic property db::$Stmt is deprecated in /www/wwwroot/junyuewh.com/inc/func.php on line 1453

Deprecated: Creation of dynamic property db::$Sql is deprecated in /www/wwwroot/junyuewh.com/inc/func.php on line 1454
英伟达投资了一家芯片“竞争对手”_产品展示_亚游app登录入口_亚游国际官网登录

英伟达投资了一家芯片“竞争对手”

  Enfabrica Corp.,一家备受瞩目的初创公司,正在AI领域掀起波澜。去年9月,该公司在B轮融资中筹集了1.25亿美元,并吸引了AI巨头英伟达的投资,这算是英伟达的一个竞争对手,因为这家初创公司研发的AI网络芯片被业界认为有望对英伟达旗下的Mellanox解决方案构成挑战。而就在本月,Enfabrica再次完成C轮融资,获得了包括Arm、思科、三星等巨头的1.15亿美元的资金支持。那么,是什么让Enfabrica脱颖而出,吸引了如此多行业巨头的持续青睐?

  Enfabrica这家初创企业成立于2020年,由 Sutter Hill Ventures 资助,由首席执行官Rochan Sankar、首席开发官 Shrijeet Mukherjee以及其他工程师创立。该公司创立之初的基本理念是数据中心的网络结构必须改变,因为底层计算范式正在发生明显的变化:更加并行、加速、异构和数据移动密集。

  随着OpenAI的ChatGPT等大语言模型的兴起,对生成式AI应用以及现在的AI代理产生了巨大的需求,这家初创公司适时推出了其AI网络互连芯片——ACF-S(Accelerated Compute Fabric-Switch,加速计算结构交换机)。ACF解决方案是从头开始发明和开发的,旨在解决GPU网络痛点以及内存和存储扩展问题等加速计算的扩展挑战。包括英伟达在内的知名投资机构对Enfabrica的全力支持,进一步证明了其技术的商业可行性和潜在价值。

  在现代AI服务器和数据中心中,存在多种连接技术,可能很多人会有所迷糊,在此作简单科普。通常我们所说的PCIe、英伟达的NVLink、AMD的Fabric这些主要是用于服务器和服务器之间的纵向连接。而网络技术则是指用于多个服务器横向连接,例如AI训练集群中的多节点通信。

  AI训练过程由频繁的计算和通信阶段交替组成,其中下一阶段的计算需要等待通信阶段在所有GPU之间完成后才能启动。通信阶段的尾部延迟(tail latency,即最后一条消息到达的时间)成为总系统性能的关键指标,因为它决定了所有GPU是否能同步进入下一阶段。在这一过程中,网络的重要性愈发凸显,网络通信需要能够传输更多的数据。若网络性能不足,这些高成本的计算集群将无法被充分的利用。而且,连接这些计算资源的网络一定要具有极高的效率和成本效益。

  其中Infiniband主要由NVIDIA(通过其Mellanox子公司)主导,是HPC领域最成熟的网络技术之一。它以极低的延迟和高带宽著称,支持远程直接内存访问(RDMA),大范围的应用于超级计算和AI训练。该技术成本比较高,部署和维护复杂性较高。目前,Nvidia 是 InfiniBand 芯片的*卖家。例如,英伟达的ConnectX-8 InfiniBand SuperNIC支持高达800Gb/s的InfiniBand和以太网网络连接,能够运行数十万台GPU。

  OmniPath是由英特尔推出的一种高性能网络技术,旨在与Infiniband竞争,虽然英特尔于2019年停止直接开发,但Cornelis Networks接管了该技术,继续发展。相比Infiniband,OmniPath的硬件和部署成本更低,适合中型HPC集群。但OmniPath的市场占有率有限,ECO不如Infiniband成熟,技术更新速度较慢。

  Slingshot是由Hewlett Packard Enterprise(HPE)旗下的Cray开发的高性能网络技术。其特色在于与以太网的兼容性,适合混合HPC和企业工作负载的场景。不过,Slingshot尚未在市场中被大规模应用,市场接受度和应用案例还有待观察。

  不过与HPC网络相比较,AI对网络需求提出了更高的要求,已从最初的高性能计算要求转向构建可在加速计算集群之间提供一致、可靠、高带宽通信的系统,这些集群现在有 10,000 个节点或更大,并且需要以类似云的服务的形式提供。

  为了打破InfiniBand的垄断,以太网正慢慢的变成为有力竞争者。以太网虽起源于通用网络技术,但其广泛的生态系统、低成本和逐步增强的性能,使其在HPC和AI横向连接技术中崭露头角。以太网的优点是生态成熟和成本效益,但在延迟和专用功能上仍需努力。因而去年,超级以太网联盟(UEC)成立,该联盟的宗旨是“新的时代需要新的网络”,UEC对新网络的定义是:性能堪比超级计算互连、像以太网一样无处不在且经济高效、与云数据中心一样可扩展。UEC的创始成员包括AMD、Arista Networks、Broadcom、思科系统、Atos 的 Eviden 分拆公司、惠普企业、英特尔、Meta Platforms 和微软。值得一提的是,后来英伟达也加入了这一联盟。

  所有这些网络技术往往依赖于专用的网络接口卡(NIC)和交换机。当前,AI服务器的网络组件如NICs、PCIe交换机和Rail Switches,大都像“烟囱式”(stovepipes)结构一样单独存在(如下图所示),彼此之间缺乏统一协调,网络带宽不足,缺乏可靠的容错机制,难以应对AI训练和推理过程中庞大的数据流量。

  这样的结构特点还带来了诸多痛点:如在GPU之间传输数据时易产生拥堵,数据在网络中需要经过多个设备跳转,增加了延迟;网络负载分布不均,可能会引起“入汇拥塞”(incast),即大量数据同时到达某一点时引发的瓶颈;此外,碎片化和低效率的网络设计导致AI集群的总成本(TCO)明显地增加,因为存在GPU和计算资源闲置的情况,造成资源浪费与带宽利用率低,GPU间的链路如果出现故障,会导致整个任务停滞,影响系统的可靠性和稳定性。

  行业变革日新月异,现在GPU已经取代CPU成为AI数据中心的核心处理资源,GPU和加速器计算基础设施的资本支出在全球所有*云提供商中占据传统计算支出的主导地位——这一切都归功于生成式 AI 的市场潜力。但有必要注意一下的是,目前部署在这些系统中的网络芯片,包括连接加速计算的PCIe交换机、NIC网络接口控制器和机架顶交换机,依然是为传统x86计算架构时代设计的产品。这些设备上 I/O 带宽的滞后慢慢的变成了AI扩展的瓶颈。

  网络芯片,也需要与时俱进了。本文我们所描述的Enfabrica公司,他们开发的ACF-S技术有望在这一领域占据一席之地。

  Enfabrica的ACF-S是一种服务器结构芯片,它不使用行业标准的PCIe交换机和具有RDMA 的以太网网络接口卡 (NIC),而是将CXL/PCIe交换功能和RNIC(远程网络接口卡)功能集成到单一设备中,也就是不再需要PCIe、NIC(网络接口控制器)或独立的CPU连接DRAM,而且这种方法消除了对CXL高级功能的依赖。这种架构和思路与超级以太网(UEC)白皮书所倡导的所有方面都需要加速器、NIC 和交换机结构之间的协调不谋而合。

  Enfabrica 首席执行官 Rochan Sankar表示:“这不是CXL架构,不是以太网交换机,也不是DPU——它可以做所有这些事情。这是一类不同的产品,能解决不同类别的问题。”

  据了解,Enfabrica的ACF-S采用100%基于标准的硬件和软件接口,包括原生多端口800千兆以太网网络和高基数PCIe Gen5和CXL 2.0+接口。该结构可直接桥接和互连GPU、CPU、加速器、内存和网络等各种设备,在这些设备之间提供可扩展、流式、每秒多TB的数据传输。它将消除对专用网络互连和传统机架顶部通信硬件的需求,充当通用数据移动器,克服现有数据中心的I/O限制。

  也就是说,ACF-S无需改变设备驱动程序之上的物理接口、协议或软件层,即可在单个硅片中实现异构计算和内存资源之间的多TB交换和桥接,同时大幅度减少当今 AI 集群中由机架顶部网络交换机、RDMA-over-Ethernet NIC、Infiniband HCA、PCIe/CXL交换机和连接 CPU的DRAM所消耗的设备数量、I/O 延迟跳跃和设备功率。

  通过结合独特的CXL内存桥接功能,Enfabrica的ACF-S成为业内*可为任何加速器提供无头内存扩展的数据中心硅产品,使单个GPU机架能够直接、低延迟、无争用地访问本地CXL DDR5 DRAM,其内存容量是GPU原生高带宽内存 (HBM) 的50倍以上。

  成本也是这家初创公司的卖点之一。这是由于节省了购买NIC和PCIe交换机的费用。据该公司称,Enfabrica的旗舰ACF交换机硅片使客户能够在相同性能点上将大型语言模型 (LLM) 推理的GPU计算成本降低约50%,将深度学习推荐模型 (DLRM) 推理的GPU计算成本降低75%。

  Millennium具有高基数、高带宽和并发 PCIe/以太网多路径和数据移动功能,可以独特地在每个服务器系统中纵向和横向扩展四到八个最新一代 GPU,为 AI 集群带来前所未有的性能、规模和弹性。Millennium 还引入了软件定义的 RDMA 网络,将传输堆栈控制权交给数据中心运营商,而不是 NIC 供应商的固件,而不可能影响线速网络性能。

  凭借单个ACF-S芯片上的800、400和100千兆以太网接口以及32个网络端口和160个PCIe通道的高基数,首次能够正常的使用更高效的两层网络设计构建超过50万个GPU的AI集群,以此来实现集群中所有GPU的最高横向扩展吞吐量和*的端到端延迟。

  也就说,不仅是GPU,Enfabrica还有望改变CPU的竞争力。Thurai 表示:“这可以让更多公司探索使用CPU而不是GPU来开发人工智能,因为GPU目前供应不足。Enfabrica的独特优点是它使用现有的接口、协议和软件堆栈,因此不需要重新连接基础设施。”

  随着AI模型训练对效率和成本效益的要求逐步的提升,网络的重要性愈发凸显。据650 Group预测,到2027年,数据中心在计算、存储和网络芯片高性能I/O领域的硅片支出将翻倍,超过200亿美元。这无疑是一块*吸引力的市场蛋糕。

  英伟达等公司对Enfabrica初创公司的投资,不仅彰显了对其技术创新的高度认可,更是着眼于未来AI生态战略布局的一步棋。要突破当前AI领域面临的网络I/O瓶颈,离不开应用AI、GPU计算和高性能网络领域的专家之间的创造性工程设计和紧密协作。只有摒弃孤立竞争,形成合力,才能一同推动技术进步,为行业注入新动力。

相关文章 查看更多 >>
首页首页 产品中心产品中心 发送消息发送消息 一键拨打一键拨打